CATEGORY THEORY Dr. Paul L. Bailey Examination 2 Solutions Sunday, October 6, 2019

Problem 1. (The group \mathbb{Z}_{101}^*) Let $G = \mathbb{Z}_{101}^*$.

- (a) Find |G|. This is the number of positive integers less than 101 which are relatively prime to 101.
- (b) Find the inverse of $\overline{33}$ in G.
- (c) For k = 2, 4, 7, 8, find an element in G of order k, or state why it cannot exist.
- (d) Does $\overline{10}$ have a square root modulo 101? Give reasons for you answer.

Solution. Recall that \mathbb{Z}_n^* is the set of members of \mathbb{Z}_n which are invertible. Each such member is represented by a unique integer between 1 and n-1 which is relatively prime to n.

- (a) Since 101 is prime, every positive integer less than 101 is relatively prime to 101. Thus $|\mathbb{Z}_{101}^*| = 100$.
- (b) Perform the Euclidean algorithm to find that

$$33(49) + 101(-16) = 1$$

Thus

 $1 \equiv 33(49) + 101(-16) \equiv 33(49) + 0 \equiv 33(49) \pmod{101},$

so the inverse of $\overline{33}$ in \mathbb{Z}_{101}^* is $\overline{49}$.

- (c) For convenience, we modulo 101 without bars. Since 100 = −1, we see that 100² = 1, so ord(100) = 2. Since 10² = 100, we see that ord(10) = 4. Since neither 7 nor 8 divides |G| = 100, we cannot have elements of those orders in G = Z^{*}₁₀₁.
- (d) A square root of $\overline{10}$ would have order 8, so no such element exists.

Problem 2. (The group A_5) Let $G = A_5$.

- (a) Find |G|.
- (b) Find the inverse of (1 3 5 2)(2 4 5)(3 7 4)(5 7).
- (c) Find all possible shapes of members of G. Find how many elements of each shape exist.
- (d) Does A_5 have a subgroup of order ten? Give reasons for you answer.

Solution. The group A_5 consists of all even permutations in S_5 .

- (a) Since exactly half of the 5! = 120 permutations are even, $|A_5| = 60$.
- (b) Let $\alpha = (1 \ 3 \ 5 \ 2)(2 \ 4 \ 5)(3 \ 7 \ 4)(5 \ 7)$. Multiply the cycles to get $\alpha = (1 \ 3 \ 7)(2 \ 4 \ 5)$. So $\alpha^{-1}(1 \ 7 \ 3)(2 \ 5 \ 4)$.
- (c) The possible shapes in S₅ are [1], [2], [3], [4], [5], [2, 2], and [2, 3]. Of these, only [1], [3], [2, 2], [5], and [2, 3] give even permutations.

[1]: There is only one identity, so there is 1 element of this shape.

[3]: There are $\binom{5}{3}$ ways to choose three elements, and each set of three elements gives two permutations. Thus there are $2\binom{5}{3} = 2 \cdot 10 = 20$ permutations of this shape.

[5]: Each five cycle moves all points. Writing the cycle with 1 first, the last four elements of the cycle can be arranged in any order, so there are 4! = 24 permutations of this shape.

[2, 2]: Each set of four elements from $\{1, 2, 3, 4, 5\}$ give three different involutions of shape [2, 2]; these three, together with the identity, four a Klein four subgroup of A_5 . There are $\binom{5}{4}$ ways to select such a set, so there are $3\binom{5}{4} = 3 \cdot 5 = 15$ permutations of this shape.

Note that 1 + 20 + 24 + 15 = 60, so we have accounted for every element of A_5 .

(d) We have seen that all of the permutations in D_5 are even, so $D_5 \leq A_5$. Since $|D_5| = 10$, we know that A_5 contains a subgroup of order ten.

Problem 3. (The group $\mathcal{P}(X)$)

The symmetric difference of two sets A and B is

$$A \triangle B = (A \cup B) \smallsetminus (A \cap B).$$

Let X be any set. Then $\mathcal{P}(X)$ is a group under the operation of symmetric difference. Let $G = \mathcal{P}(\{1, 2, 3, 4\})$.

- (a) Find |G|.
- (b) State the identity element of G. Let $A \in G$; state the inverse and the order of A.
- (c) Does G have any subgroups isomorphic to C_4 ? to K_4 ? Explain.
- (d) Is $\mathcal{P}(X)$ a group under intersection? Justify your answer.

Solution. Recall that $\mathcal{P}(X)$ consists of all subsets of the set X. Let $X = \{1, 2, 3, 4\}$ so that $G = \mathcal{P}(X)$.

- (a) The power set of a set of cardinality n contains 2^n elements, so $|\mathcal{P}(X)| = 2^4 = 16$.
- (b) The identity element is \emptyset , since $A \triangle \emptyset = \emptyset$.
- (c) Every element in G has order two, so there is no cyclic subgroup of order four. However, since G is abelian, any two distinct element of order two generate a Klein four subgroup.
- (d) No, $\mathcal{P}(X)$ is not a group under intersection. There is an identity element, namely X, since $A \cap X = A$ for all $A \subset X$. However, let A be a proper subset of X, and let B be any subset of X. Since $A \cap B$ is a subset of A, it is a proper subset of X, and there B is not an inverse for A, so A is not invertible.

Problem 4. (Number Theory)

Complete the following proofs.

(a) Let $a, b, c \in \mathbb{Z}$. Show that if $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Since $a \mid bc$, there exists $k \in \mathbb{Z}$ such that $\underline{ka} = bc$. Since gcd(a, b) = 1, there exist $x, y \in \mathbb{Z}$ such that $\underline{ax + by} = 1$. Multiply the second equation by \underline{c} to obtain $\underline{acx + bcy} = c$. Substitute the first equation into the second to obtain $\underline{axc + kay} = c$. Factor out a from the left hand side to obtain $\underline{a(xc + ky)} = c$. Thus $a \mid c$.

(b) Let $m, n \in \mathbb{Z}$. Let G be a group, and let $g \in G$ be an element of order m. Show that if $g^n = 1$, then $m \mid n$.

Proof. By the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that $n = \underline{mq + r}$, where $0 \leq \underline{r} < \underline{m}$.

Since $g^n = 1$, we have $1 = g^{mq+r} = (g^m)^q g^r = 1^q g^r = g^r$. Since $g^r = 1$, and $0 \le r < m$, and m is the smallest positive integer such that $g^m = 1$, we must have r = 0; that is, n = mq. Thus $m \mid n$.

Problem 5. (Group Theory)

Supply a short proof in each case.

(a) Let G be a finite group of even order. Show that G has an element of order two.

Solution. Consider the function $\alpha: G \to G$ given by $\alpha(g) = g^{-1}$. Then α is a permutation of G, and G is the disjoint union of the orbits of α . Since $\alpha(1) = 1$, the orbit of 1 is odd, and since |G| is even, α must have another orbit of odd length. However, since $(a^{-1})^{-1} = a$, each orbit of α has cardinality at most two. Thus, α has another orbit of length one, so α has another fixed element, say $\alpha(g) = g$ where $g \neq 1$. Thus $g = g^{-1}$, which implies $g^2 = 1$, so g is an element of order two.

(b) Let G be a finite group in which every nontrivial element has order two. Show that G is abelian.

Solution. Let $a, b \in G$. Then $a^2 = 1$ and $b^2 = 1$. Multiplying these equations gives $a^2b^2 = 1$. But ab is also in G, so $(ab)^2 = 1$; that is, abab = 1. Combining these equations produces $a^2b^2 = abab$. Multiplying on the left by a^{-1} and on the right by b^{-1} produces ab = ba, as we desired.