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Dr. Paul L. Bailey Sunday, October 6, 2019

Problem 1. (The group Z∗
101)

Let G = Z∗
101.

(a) Find |G|. This is the number of positive integers less than 101 which are relatively prime to 101.

(b) Find the inverse of 33 in G.

(c) For k = 2, 4, 7, 8, find an element in G of order k, or state why it cannot exist.

(d) Does 10 have a square root modulo 101? Give reasons for you answer.

Solution. Recall that Z∗
n is the set of members of Zn which are invertible. Each such member is represented

by a unique integer between 1 and n− 1 which is relatively prime to n.

(a) Since 101 is prime, every positive integer less than 101 is relatively prime to 101. Thus |Z∗
101| = 100.

(b) Perform the Euclidean algorithm to find that

33(49) + 101(−16) = 1.

Thus
1 ≡ 33(49) + 101(−16) ≡ 33(49) + 0 ≡ 33(49) (mod 101),

so the inverse of 33 in Z∗
101 is 49.

(c) For convenience, we modulo 101 without bars.

Since 100 = −1, we see that 1002 = 1, so ord(100) = 2.

Since 102 = 100, we see that ord(10) = 4.

Since neither 7 nor 8 divides |G| = 100, we cannot have elements of those orders in G = Z∗
101.

(d) A square root of 10 would have order 8, so no such element exists.



Problem 2. (The group A5)
Let G = A5.

(a) Find |G|.

(b) Find the inverse of (1 3 5 2)(2 4 5)(3 7 4)(5 7).

(c) Find all possible shapes of members of G. Find how many elements of each shape exist.

(d) Does A5 have a subgroup of order ten? Give reasons for you answer.

Solution. The group A5 consists of all even permutations in S5.

(a) Since exactly half of the 5! = 120 permutations are even, |A5| = 60.

(b) Let α = (1 3 5 2)(2 4 5)(3 7 4)(5 7). Multiply the cycles to get α = (1 3 7)(2 4 5). So
α−1(1 7 3)(2 5 4).

(c) The possible shapes in S5 are [1], [2], [3], [4], [5], [2, 2], and [2, 3]. Of these, only [1], [3],
[2, 2], [5], and [2, 3] give even permutations.

[1]: There is only one identity, so there is 1 element of this shape.

[3]: There are
(
5
3

)
ways to choose three elements, and each set of three elements gives two permutations.

Thus there are 2
(
5
3

)
= 2 · 10 = 20 permutations of this shape.

[5]: Each five cycle moves all points. Writing the cycle with 1 first, the last four elements of the cycle
can be arranged in any order, so there are 4! = 24 permutations of this shape.

[2, 2]: Each set of four elements from {1, 2, 3, 4, 5} give three different involutions of shape [2, 2]; these
three, together with the identity, four a Klein four subgroup of A5. There are

(
5
4

)
ways to select such

a set, so there are 3
(
5
4

)
= 3 · 5 = 15 permutations of this shape.

Note that 1 + 20 + 24 + 15 = 60, so we have accounted for every element of A5.

(d) We have seen that all of the permutations in D5 are even, so D5 ≤ A5. Since |D5| = 10, we know that
A5 contains a subgroup of order ten.



Problem 3. (The group P(X))
The symmetric difference of two sets A and B is

A4B = (A ∪B) r (A ∩B).

Let X be any set. Then P(X) is a group under the operation of symmetric difference. Let G = P({1, 2, 3, 4}).

(a) Find |G|.

(b) State the identity element of G. Let A ∈ G; state the inverse and the order of A.

(c) Does G have any subgroups isomorphic to C4? to K4? Explain.

(d) Is P(X) a group under intersection? Justify your answer.

Solution. Recall that P(X) consists of all subsets of the set X. Let X = {1, 2, 3, 4} so that G = P(X).

(a) The power set of a set of cardinality n contains 2n elements, so |P(X)| = 24 = 16.

(b) The identity element is ∅, since A4∅ = ∅.

(c) Every element in G has order two, so there is no cyclic subgroup of order four. However, since G is
abelian, any two distinct element of order two generate a Klein four subgroup.

(d) No, P(X) is not a group under intersection. There is an identity element, namely X, since A∩X = A
for all A ⊂ X. However, let A be a proper subset of X, and let B be any subset of X. Since A ∩B is
a subset of A, it is a proper subset of X, and there B is not an inverse for A, so A is not invertible.

Problem 4. (Number Theory)
Complete the following proofs.

(a) Let a, b, c ∈ Z.
Show that if a | bc and gcd(a, b) = 1, then a | c.

Proof. Since a | bc, there exists k ∈ Z such that ka = bc.

Since gcd(a, b) = 1, there exist x, y ∈ Z such that ax+ by = 1.

Multiply the second equation by c to obtain acx+ bcy = c.

Substitute the first equation into the second to obtain axc+ kay = c.

Factor out a from the left hand side to obtain a(xc+ ky) = c.

Thus a | c.

(b) Let m,n ∈ Z. Let G be a group, and let g ∈ G be an element of order m.
Show that if gn = 1, then m | n.

Proof. By the Division Algorithm, there exist unique q, r ∈ Z such that n = mq + r,

where 0 ≤ r < m.

Since gn = 1, we have 1 = gmq+r = (gm)qgr = 1qgr = gr.

Since gr = 1, and 0 ≤ r < m, and m is the smallest positive integer such that gm = 1, we must have
r = 0; that is, n = mq.

Thus m | n.



Problem 5. (Group Theory)
Supply a short proof in each case.

(a) Let G be a finite group of even order. Show that G has an element of order two.

Solution. Consider the function α : G → G given by α(g) = g−1. Then α is a permutation of G, and
G is the disjoint union of the orbits of α. Since α(1) = 1, the orbit of 1 is odd, and since |G| is even,
α must have another orbit of odd length. However, since (a−1)−1 = a, each orbit of α has cardinality
at most two. Thus, α has another orbit of length one, so α has another fixed element, say α(g) = g
where g 6= 1. Thus g = g−1, which implies g2 = 1, so g is an element of order two.

(b) Let G be a finite group in which every nontrivial element has order two. Show that G is abelian.

Solution. Let a, b ∈ G. Then a2 = 1 and b2 = 1. Multiplying these equations gives a2b2 = 1.

But ab is also in G, so (ab)2 = 1; that is, abab = 1. Combining these equations produces a2b2 = abab.
Multiplying on the left by a−1 and on the right by b−1 produces ab = ba, as we desired.


